
How I think about the neural network

backpropagation algorithm

Carolyn Johnston

January 6, 2020

1 Introduction

This writeup owes a lot to Chapter 2 in Michael Neilsen's free online book, �Neu-
ral Networks and Deep Learning� [1]; I �rst got my arms around the mathemat-
ics of the backpropagation algorithm by studying that chapter very carefully.
Another really delightful treatment of the mathematics behind the backprop-
agation algorithm is 3Blue1Brown's video of the calculus of backpropagation
([3]), which explains everything very clearly for the case where all the neural
network layers are 1-dimensional.

At the heart of the neural net backpropagation algorithm is a clever algo-
rithm for computing the gradient of the carefully constructed neural net cost
function. This gradient is needed in order to train the neural network using
optimization algorithms based on gradient descent methods.

Since neural network functions are composite functions, the chain rule �gures
very large in the calculation of the gradient. Viewed during the post-training
operation of the neural network, with all the weight and bias parameters �xed,
the neural network is a function of its inputs; but during training, the neural
network must be thought of as having �xed input/output pairs, and being a
function of its parameters. As part of training, the gradient must be computed
with respect to all of its potentially millions of parameters. This is the central
task of the backpropagation algorithm.

What makes understanding the neural network backpropagation algorithm
so challenging? I think it is trying to understand the big picture, while simul-
taneously tracking indices and summations for chain-rule expressions involv-
ing high-dimensional function values and arguments. Our minds just aren't
equipped to do both things at the same time. This is why matrix notation
for linear algebra is such a game-changer; in our undergraduate linear algebra
classes, we learned to `chunk' the meanings of matrix expressions, and every-
thing about linear algebra since then has been easier to understand.

In this writeup, I show that you can derive the standard high-dimensional
backpropagation equations by thinking of the terms in the chain rule as being
vectors, matrices, and in some cases, 3-dimensional `boxes of numbers', with ap-
propriate de�nitions for their products. The vectors, matrices and 3-dimensional

1

boxes of numbers are actually 1-, 2-, and 3-tensors with appropriate tensor prod-
ucts; tensor algebra is at the core of neural net algorithms, but most of us aren't
comfortable with tensor algebra.

My goal here isn't to teach tensor algebra, but rather to show that the chain
rule, expressed in terms of these objects, is as easy to understand as the one-
dimensional chain rule case; but the multidimensional algorithm is still derivable
in its fullest high-dimensional complexity.

2 The feed-forward neural network and the cost

function

Figure 1 shows a high-level schematic of a simple neural network with an input
layer 1 of size 3, a hidden layer 2 of size 4, and an output layer 3 of size 2 (let's
ignore the `1' nodes for the moment). This simple neural network computes a
function f : R3 → R2. In order to train this neural net, we would need a (large)
set of sample input - output pairs

D = {(~zi, λi)}Ni=1,

where ~zi ∈ R3 and λi = g(~zi) ∈ R2 are sample inputs and outputs from the
neural network. Our goal is to use the sample data to teach the neural net to
compute g(z) for examples of z that are not in the training set.

In the neural network graph in Figure 1, each node in layers 2 and 3 with an
edge pointing to it (reading left to right) represents a point in the computation
at which two things happen. First, all the inputs to the node are summed;
second, a nonlinear activation function is applied. Each edge in the graph is
associated with a real-valued weight w that is applied, via multiplication, to the
output of the previous node before it is input to the new node.

In order to train the neural network using gradient descent, we need to have
a scalar-valued function E to take the gradient of. E can be thought of as
measuring the error in the output of the neural net, and the goal of gradient
descent is to tune the parameters of the neural net until this error is minimized.

Usually, E is the sum or average over all the sample input-output pairs of a
cost function, C(f(~zi), λi), that expresses the cost of obtaining the output f(~zi)
when the correct output is λi = g(~zi).

If f(~zi) ≡ g(~zi) = λi, the cost function C(f(~zi), λi) is typically 0, indicating
that there is no cost if the answer given by the neural net is correct. The cost
function takes on positive values when f(~zi) 6= λi. The objective of training the
network is to tune the weights associated with the edges in the neural net so that
the total error E = ΣiC(f(~zi), λi) is minimized. One of the simplest examples
of a cost function is the squared di�erence between the values, C(f(~zi), λi) =
(f(~zi)− λi)2.

Figure 2 shows a more detailed schematic of the transforms in a single layer.
In particular, it shows how the input vectors ~zl−1i to nodes in layer l − 1 are
transformed to create the inputs ~zli to layer l. In Figure 2, I have separated

(c) Carolyn Johnston, 2020. All rights reserved.

Figure 1: Schematic of a neural network, showing standard weight labeling
scheme.

each node in the graph in Figure 1 into two nodes, each of which applies a
single operation to its input. The summation nodes (shown with a + sign) sum
all their inputs. The σ nodes apply the activation functions σ. In most neural
net graphics, these two operations are represented together by a single node, as
they were in Figure 1.

2.1 The scalar viewpoint

We'll �rst look at the feed-forward algorithm in terms of individual vector com-
ponents, rather than vectors. Figure 2 shows each scalar component zl−1i of
an input vector individually. The scalar zl−1i is �rst passed through a σ node,
which applies a nonlinear `activation' function to it. Classically, the activation
function was chosen to be the logistic function

σ(x) =
1

1 + exp(−x)
,

but there are other activation functions in wide use. In particular, the ReLU
activation function

σ(x) = max(0, x)

is widely used in convolutional neural nets to solve computer vision problems.
In Figure 2, both the σ nodes and their scalar outputs, σ(zl−1i) = al−1i , are

shown in green. Each output value al−1i from the i-th σ node is then trans-
mitted to the sum (+) nodes (shown in blue) in layer l − 1 through all of the

(c) Carolyn Johnston, 2020. All rights reserved.

edges/connectors that originate at the i-th σ node. If an edge connects the j-th
sigma node in layer l − 1 to the i-th sum node, then the value al−1j will be

multiplied by the weight wlij during transmission. Both the weights and their
associated edges are shown in orange.

Note also that there are special nodes in layer l− 1, labeled with a `1'; these
only emit 1s, and do not depend on any input from the previous layer of the
neural net. The edge which connects such a node to the i-th summation node
multiplies the emitted 1 by a bias parameter, bli.

2.2 The vector viewpoint

Since the weights wlij are doubly indexed, we can think of these weights as

constituting a matrix which we call W l. The matrix W l transforms the vector
~al−1j by matrix multiplication before it reaches the next summation step. The

dimensions of the matrix W l are Nl × Nl−1, where Nl is the number of sum
nodes in the layer that that the edges are pointing to, and Nl−1 is the number
of σ nodes that the edges originate from.

Similarly, the parameters bli constitute a vector of length Nl, which we call
~bl. In Figure 2, Nl = 2 and Nl−1 = 3, soW l is a 2x3 matrix, and ~bl is a 2-vector.

For a fully connected neural network, there are a total of Nl−1+1 edges that
arrive at each summation node in layer l − 1. Nl−1 of them carry the values
al−1j ∗wlij for j = 1, ..., Nl, and one carries the value bli coming from the `1' node.
These are summed at the summation node to give

zli = Σ
Nl−1

j=1 w
l
ija

l−1
j + bli.

However, this summation operation can be written more succinctly using the
matrix product:

~zl = W l · ~al−1 +~bl,

where ~zl,~bl ∈ RNl , and ~al−1 ∈ RNl−1 .
If we de�ne the vectorized form of the scalar function σ as

σ(~x) = (σ(x1), ..., σ(xn))t,

and suppress the vector notation and the matrix indices, the function φl that
transforms ~zl−1 to ~zl is given by

~zl = φl(~zl−1) = W l · σ(~zl−1) + bl. (1)

The neural network function f is then de�ned as

f(~z1) = σ(φL(φL−1(....(φ2(~z1)...)) = σ(φL ◦ φL−1 ◦ ... ◦ φ2(~z1)). (2)

The game is to tune the weight parameters in W l and the bias parameters
in ~bl, for each layer l, so that the function f(z) is close to the desired function
g(z).

(c) Carolyn Johnston, 2020. All rights reserved.

Figure 2: Schematic of a single layer of a neural network.

3 Some linear algebra and multivariate calculus

notation

It is possible to de�ne derivatives of scalar-, vector-, and matrix-valued functions
with respect to arguments that are scalar, vector, or matrix valued; and it is
possible to do so in such a way that the chain rule can be neatly expressed in
terms of products of these objects.

The gradient and the Jacobian are examples of higher-dimensional deriva-
tive objects, and there are other extensions. �The Matrix Cookbook� ([4]) is a
popular online reference that discusses derivatives of scalar functions with re-
spect to a matrix argument. �Old and New Matrix Algebra Useful for Statistics�
([5]) is a reference which discusses all the types of derivatives that can be ex-
pressed as matrices. Neither of these references discusses derivatives that must
be expressed as higher-dimensional objects than matrices.

In the sections below, I talk about what sort of objects these higher-dimensional
derivative objects are, and how they can be multiplied together to express the
chain rule in various situations. My approach to this uses a sort of `dimensional
analysis', answering the question: if the standard expressions of calculus, such
as the Taylor expansion and the chain rule, are to make sense in each case, what
kind of objects do their elements need to be, how are they multiplied, and what
are their dimensions?

I am assuming that, like me, you are very familiar with matrix multiplication,
and much less familiar with tensor multiplication. A reference I liked for this

(c) Carolyn Johnston, 2020. All rights reserved.

topic is Chapter 1 in �A Gentle Introduction to Tensors�, by Boaz Porat ([2]).
We'll assume that every vector, whether it is the value of a function or the

argument of a function, is a column vector (equivalently, a matrix of dimension
N × 1).

3.1 Derivative of a vector-valued function of a scalar

Suppose f : R→ RNl is a Nl-dimensional vector-valued function of a scalar, z.
Then we should have ~f(z+ ∆z) ≈ ~f(z) + [δ ~f/δz] ·∆z, and so [δ ~f/δz] ·∆z must

also be a Nl-dimensional column vector. Since ∆z is a scalar, [δ ~f/δz] must be
an Nl-dimensional vector, and the two are multiplied using the standard scalar
product.

3.2 Derivative of a scalar-valued function of a vector

If f : RNl → R is a scalar-valued function of a vector, so that f(~zl + ∆~zl) ≈
f(~zl) + [δf/δ~zl] ·∆~zl is a scalar, the product [δf/δ~zl] ·∆~zl must be coercible to
a scalar, and therefore must have dimension 1 × 1. Recall that vectors ~zl, and
their increments ∆~zl, are column vectors (i.e., they are matrices of dimension
Nl × 1).

Therefore, if [δf/δ~zl] ·∆~zl is de�ned using the standard inner product, gra-
dient vectors δf/δ~zl (for scalar functions f) have to be row vectors (with di-
mensions 1×Nl); i.e, they must have dimension equal to those of the transpose
of ~zl. This is an important point: derivatives of scalar functions with respect
to column vectors are row vectors.

3.3 Derivative of a vector-valued function of a vector

Similarly, if ~f : RNl → RNl+1 is a vector-valued function, then ~f(~zl + ∆~zl) ≈
~f(~zl) + [δ ~f/δ~zl] · ∆~zl is a column vector with dimensions Nl+1 × 1. Therefore

the product [δ ~f/δ~zl] · ∆~zl must be a column vector with Nl+1 × 1. It follows

that if [δ ~f/δ~zl] ·∆~zl is de�ned using the standard matrix product, the matrix

[δ ~f/δ~zl] must have dimensions Nl+1 ×Nl.
The matrix [δ ~f/δ~zl], called the Jacobian matrix of ~f, is the matrix whose

i, j entry is the partial derivative δfi/δzj .We can also think of [δ ~f/δ~zl] as being
the set of (row) gradient vectors δfi/δ~z

l (where fi is the i-th component of the

vector-valued function ~f) stacked into a matrix with Nl+1rows.

3.4 Derivative of a scalar-valued function of a matrix

Next, suppose that f : RNl+1×Nl → R is a scalar-valued function of the weight
matrix W l+1 of dimension Nl+1 ×Nl, whose elements are wl+1

ij . Dropping the

superscript l + 1 for the moment, we want to de�ne [δfδW] in such a way that

f(W + ∆W) ≈ f(W) + [
δf

δW
] ·∆W.

(c) Carolyn Johnston, 2020. All rights reserved.

But here we run into a problem. The expression f(W + ∆W) is a scalar, and
therefore the expression [δfδW] · ∆W must also be a scalar. The matrix ∆W
is, like W itself, an Nl+1 × Nl-dimensional matrix � but there is no matrix of
any dimension which multiplies an Nl+1 × Nl -dimensional matrix, using the
standard matrix product, to create a 1× 1 matrix that is coercible to a scalar.

The resolution to this problem is that the product needed in the expression
[δfδW] ·∆W is not the standard matrix product. If W and ∆W are Nl+1 × Nl
-dimensional matrices, de�ne [δfδW] to be the Nl ×Nl+1-dimensional matrix

[
δf

δW
]ji =

δf

δwij
,

for j ∈ 1, ..., Nl and i ∈ 1, ..., Nl+1, and de�ne

[
δf

δW
] ·∆W = Σ

Nl+1

i=1 ΣNl
j=1

δf

δwij
∆wij . (3)

This is actually a tensor product and contraction over both the row and column
dimensions of ∆W (see Chapter 1.9 in [2]).

The thing to remember about this example is that if f : RNl+1×Nl → R
is a scalar-valued function of a matrix W l ∈ RNl+1×Nl , then [δfδW] should be
thought of as an Nl ×Nl+1-dimensional matrix; i.e., having the same shape as
the transpose of W l.

3.5 Derivative of a vector-valued function of a matrix

Finally, suppose that f : RNl+1×Nl → RM is a vector-valued function of the
weight matrix W l+1 of dimension Nl+1×Nl. Dropping the superscript l+ 1 for
W as before, we want to de�ne [δf/δW] in such a way that

~f(W + ∆W) ≈ ~f(W) + [
δ ~f

δW
] ·∆W.

The dimensions of ~f(W) and ∆W are M × 1 and Nl+1×Nl, and there is no
matrix that multiplies an Nl+1 ×Nl-dimensional matrix to produce an M × 1-

dimensional vector. The product needed for [δ
~f

δW] ·∆W is not a standard matrix

product, and the object [δ
~f

δW] is not a 2-dimensional matrix.

To get a feeling for what [δ
~f

δW] needs to be, consider that if we con�ne our-

selves to a single component fk of the vector valued function ~f , then fk :
RNl+1×Nl → R is a scalar-valued function of the weight matrix W , and we
are back in the case discussed in the previous section. Therefore, we should
think of [δfk/δW] as being a matrix having the shape of the transpose of W ,
with

[
δfk
δW

]ji =
δfk
δwij

.

Since ~f is a vector valued function with M components, for each k ∈ 1...M
there is a matrix [δfk/δW] ∈ RNl×Nl+1 . Since ~f(W) is itself an M × 1-vector,

(c) Carolyn Johnston, 2020. All rights reserved.

we should think of [δ ~f/δW] as being an M ×1-dimensional column vector, each
of whose components is the Nl ×Nl+1-dimensional matrix [δfk/δW].

To summarize, [δ ~f/δW] is a `3-dimensional matrix', a 3-tensor, with dimen-

sions M × Nl × Nl+1. Each element of [δ ~f/δW] is indexed using 3 indices,

[k, i, j]. The 2-dimensional `slice' [δ ~f/δW][k, ·, ·] through [δ ~f/δW] is equal to

the matrix [δfk/δW], which has dimensions Nl×Nl+1. The product [δ
~f

δW] ·∆W
is a vector of dimension M × 1 whose k-th component is [δfk/δW] · ∆W, as
de�ned in equation 3.

4 Derivation of backpropagation

To appreciate the backpropagation algorithm for computing the gradient of the
cost function of a neural net � and by extension, the elegance of the neural net's
construction � consider that a neural net may have millions of parameters, since
every wlij and every bli for every layer l usually constitutes a separate parameter.

As calculus students, we've calculated gradients by hand of the form δf/δ~p
for vectors ~p of dimensions up to, say, 5 or 10. You'll remember that every
component of a gradient vector is a di�erent function of all the parameters ~p.
If the neural net function in Equation 2 were not of a special form, calculating
the derivative δf/δp for every parameter p would be a grueling task. The cool
thing about the deep neural network construction is that it is easy to calculate
the gradients of its cost functions, but by varying the parameters W l and bl

for all layers l, arbitrarily complicated functions can be expressed by a neural
network (see chapter 4 in [1] for an explanation of this point).

Figure 3: Another way to look at the neural net function de�nition.

Figure 3 shows another view of the function de�nition in equation 2. The
input to the neural net is the training vector ~z1. It is �rst transformed sequen-

tially by the functions φ2, ..., φL to produce the vector ~zL, which is then passed
through the (vectorized) activation function σ to produce the �nal activation
vector f(~z1) = ~aL. The activation vector is then passed to the cost function
C, which compares f(~z1) with its training label λ to calculate the cost function
C(f(~z1), λ).

For each l ∈ 1, ..., L, de�ne the scalar function Cl : RNL → R as

Cl = C ◦ σ ◦ φL ◦ φL−1 ◦ ... ◦ φl+1. (4)

(c) Carolyn Johnston, 2020. All rights reserved.

It follows that Cl = Cl+1 ◦ φl+1, and C1(~zi
1) = C(f(~zi

1), λi), where f is the
neural network function de�ned in equation 2, and λi is the true value of g(~zi).

The objective of backpropagation is to obtain the partial derivatives δC1/δw
l
ij

and δC1/δb
l
i for each layer l and all indices i, j.

Our approach will use the chain rule and the multidimensional derivative
objects discussed in Section 3. This will be our strategy:

1. For layers l = 1, ..., L, de�ne `helper' gradients ~δl ∈ RNl by

~δl = δCl/δ~z
l,

where ~zl are the inputs to the layer l function φl+1, and Cl is as de�ned in

equation 4. Since the ~δl are gradients, we will think of them as row vec-
tors with dimensions Nl × 1 (see Section 2.2). These are easily calculated
recursively for decreasing l = L, ..., 1.

As an aside, the helper gradient ~δl is referred to in [1] as the `error in
the layer l', because it is the gradient of the cost function with respect to
the input ~zl to the function φl+1 in the l-th layer of the neural network.

2. Calculate the derivatives of the scalar function C1 = C ◦ f with respect to
weight matricesW l ∈ RNl×Nl−1 using the chain rule and the precomputed
`helper' gradients ~δl ∈ RNl .

3. Calculate the derivatives of the scalar function C1 with respect to the
bias vectors bl ∈ RNl using the chain rule and the precomputed `helper'
gradients ~δl ∈ RNl .

4.1 De�ne the helper gradient ~δL in the last layer of the

neural net.

First, we must de�ne the helper gradient ~δL = δf/δ~zL for the last layer L in

the neural net. The other helper gradients ~δl will be calculated recursively from
~δl+1, working backward down the neural network to its beginning.

For the last layer L in the neural net, we have

~δL = δ(C ◦ σ(~zL))/δ~zL = δ(C(~aL))/δ~zL.

Applying the chain rule, we have

~δL = [
δC

δ~aL
] · [δ~a

L

δ~zL
],

where [δC/δ~aL] is a row vector of dimension 1 × NL, and [δ~aL/δ~zL] is an
NL×NL-dimensional matrix. For most cost functions C, the gradient [δC/δ~aL]
with respect to the �nal activation vector ~al is simple to calculate. For example,

(c) Carolyn Johnston, 2020. All rights reserved.

if the cost function is the squared di�erence C(~aL) =
∥∥∥~aL − ~λ∥∥∥2 between the

neural network's output value ~aLand the true value ~λ, then

δC

δ~aL
= 2 · (~aL − ~λ)t.

The derivative [δ~aL/δ~zL], as derived in Section 2.3, is anNL×NL-dimensional
matrix, but it has a simple form; because aLj is a function of zLj only, the deriva-
tive is actually a diagonal matrix:

[
δ~aL

δ~zL
] = diag{σ′(zLj)}NL

j=1.

It follows that ~δLj = (δC/δaLj) · σ′(zLj). Written in matrix product form,

~δL = [
δC

δ~aL
] · [δ~a

L

δ~zL
] =

δC

δ~aL
· [diag{σ′(zLj)}NL

j=1]. (5)

In [1], the same expression is written in vector form using the Hadamard
(elementwise) vector product of δC/δ~aL and σ′(~zL).

4.2 De�ne the helper gradient ~δl as a function of ~δl+1.

Recall the scalar-valued functions Cl : RNL → R de�ned in equation 4. Our
goal in this section is to calculate δCl/δ~z

l, given δCl+1/δ~z
l+1.

Since Cl = Cl+1 ◦ φl+1, we have (according to the chain rule),

~δl = [
δCl
δ~zl

] = [
δCl+1 ◦ φl+1

δ~zl
] = [

δCl+1 ◦ φl+1(~zl)

δφl+1(~zl)
] · [δφl+1(~zl)

δ~zl
] (6)

= [
δCl+1

δ~zl+1
] · [δ~z

l+1

δ~zl
] = ~δl+1 · [δ~z

l+1

δ~zl
].

Let's review the dimensions and types of these objects for a moment. The
helper gradient ~δl is the gradient of Cl, a scalar function, with respect to ~zl, a
vector; therefore it is a row vector of dimension 1×Nl. Similarly, ~δl+1 is a row
vector of dimension 1×Nl+1.

The expression [δ~zl+1/δ~zl] is the Jacobian of an Nl+1-vector valued function
with respect to a Nl-vector valued argument, and therefore is a matrix with
dimension Nl+1 ×Nl. Multiplying a 1×Nl+1 gradient vector on the right by a
Nl+1×Nl-dimensional matrix to get a 1×Nl-dimensional gradient vector makes
sense.

Now, it remains to calculate [δ~zl+1/δ~zl] = [δφl(~z
l)/δ~zl]. Since φl(~z

l) =

W l+1 ·σ(~zl)+~bl+1, andW l+1 and ~bl+1 are constants with respect to ~zl, we have

[δ~zl+1/δ~zl] = [δ(W l+1 · ~al +~bl)/δ~zl] = W l+1 · [δ~al/δ~zl], (7)

where [δ~zl+1/δ~zl] is a matrix of dimension Nl+1 × Nl, W l+1 is a matrix of
dimension Nl+1 ×Nl, and [δ~al/δ~zl] is a matrix of dimension Nl ×Nl.

(c) Carolyn Johnston, 2020. All rights reserved.

Since (~al)j is a function of (~zl)j only, [δ~al/δ~zl] is actually a diagonal matrix
for all l:

[δ~al/δ~zl] = diag{σ′(zlj)}
Nl
j=1. (8)

Putting together equations 6,7, and 8, we get:

~δl = ~δl+1 ·W l+1 · diag{σ′(zlj)}
Nl
j=1, (9)

where the products are standard matrix-vector products. This formula di�ers
slightly from the equivalent formula (BP2) in [1] because in this treatment, the

vectors ~δl are gradients and therefore row vectors.

4.3 Calculate the derivatives of the scalar function C1 =
C◦f with respect to the weight matrices W l ∈ RNl×Nl−1 .

Now we have come to the core goal of backpropagation: we need to be able to
�nd the gradient of C1 = C ◦ f with respect to all of the weight matrices {W l}
and bias vectors {~bl}.

Again, according to the chain rule (with an appropriately de�ned product),
we write

[
δC1

δW l
] = [

δC1

δ~zl
] · [δ~z

l

δW l
]. (10)

The �rst term, [δC1/δ~z
l], is a derivative of a scalar function with respect to

a vector argument, so it is a gradient and therefore a row vector. In fact, since

[
δC1

δ~zl
] = [

δ(Cl ◦ φl−1 ◦ φl−2 ◦ ... ◦ φ1)

δ(φl−1 ◦ φl−2 ◦ ... ◦ φ1(~z1))
] = [

δCl
δ~zl

],

it follows that
[δC1/δ~z

l] = [δCl/δ~z
l] = ~δl, (11)

where ~δl is the helper gradient of Section 3.3.
The term [δ~zl/δW l] is a derivative of a vector-valued function with respect

to a matrix-valued valued argument, de�ned by:

[
δ~zl

δW l
] =

δ

δW l
(W l · σ(~zl−1) +~bl) =

δ

δW l
(W l · ~al−1 +~bl).

Referring back to Section 2.5, [δ~zl/δW l] is actually a `3-dimensional matrix'
(i.e., a 3-tensor) with dimensions Nl × (Nl−1 × Nl). The 2-dimensional `slice'
[δ~zl/δW l][k, ·, ·] is equal to the matrix [δzlk/δW], where zlk is the k-th coordinate
of ~zl.

If wli,j is the (i, j)- coordinate of the weight matrix W l, then we have the

following expression for the (k, i, j) term of [δ~zl/δW l] :

[
δ~zl

δW l
](k,i,j) =

δzlk
δwlj,i

=

{
δ

δwl
ji

(Σiw
l
jia

l−1
i + blj) = al−1i if k = j

0 otherwise.

(c) Carolyn Johnston, 2020. All rights reserved.

It follows that

[
δ~zl

δW l
](k,i,j) = Ij=k · al−1i ,

where Ij=k indicates the Kronecker delta (i.e, it is 1 if j = k, and otherwise
0).

We calculate the �nal product from equation 10, which is given by a tensor
product of the gradient vector [δC1/δ~z

l] with the 3-tensor [δ~zl/δW l] :

[
δC1

δW l
](i,j) = ΣNl

k=1[δC1/δ~z
l]k · [δ~zl/δW l](k,i,j) (12)

= ΣNl

k=1δ
l
k · Ij=k · al−1i = δlj · al−1i .

Thus, the derivative of the neural network cost function with respect to the
weight matrix W l is the matrix that is the (outer) tensor product of the helper

gradient ~δl with the activations ~al−1 from the previous layer. This product is
written in tensor product notation as

[
δC1

δW l
] = ~al−1 ⊗ ~δl. (13)

4.4 Calculate the derivatives of the scalar function C1 =
C ◦ f with respect to the bias vectors bl ∈ RNl .

By the chain rule, we have

[
δC1

δ~bl
] = [

δC1

δ~zl
] · [δ~z

l

δ~bl
]. (14)

As shown in the previous section, [δC1/δ~z
l] = ~δl, the helper gradient in layer

l.
[δ~zl/δ~bl] is a derivative of an Nl-vector valued function by an NL-vector

valued argument, so it can be thought of as an Nl × Nl-dimensional matrix.
Since

δ

δ~bl
(W l · σ(~zl−1) +~bl) =

δ~bl

δ~bl
= I

is the Nl ×Nl identity matrix, we have

[
δC1

δ~bl
] = [

δC1

δ~zl
] · [δ~z

l

δ~bl
] = ~δl · I = ~δl. (15)

So the gradient of C1 with respect to the bias vector ~bl is exactly the helper
gradient ~δl.

(c) Carolyn Johnston, 2020. All rights reserved.

5 Summary

Once we are able to calculate [δC1/δW
l] and [δC1/δ~b

l] for each l, we have
the entirety of the gradient of C1 with respect to all the parameters in the
neural network. It is easy to write out the pseudocode for a feed-forward and
backpropagation loop with a single training example (~z1, λ):

1. Input the training sample ~z1 to the neural network.

2. Feed-forward: For l = 1, ..., L, iteratively calculate (and save) ~al = σ(~zl)

and ~zl+1 = W l+1 · ~al +~bl+1.

3. Backpropagation step 1: Compute the L-th helper gradient ~δL:

~δL = [
δC

δ~aL
] · [δ~a

L

δ~zL
] =

δC

δ~aL
· [diag{σ′(zLj)}NL

j=1].

4. Backpropagation step 2: For each l = L− 1, ..., 1, compute ~δl recursively
from ~δl+1:

~δl = [
δCl+1

δ~zl+1
] · [δ~z

l+1

δ~zl
] = ~δl+1 ·W l+1 · diag{σ′(zlj)}

Nl
j=1.

5. Backpropagation step 3: For each l = L, ..., 2, compute [δC1

δW l] as the outer

tensor product of the activation (column) vector ~al−1 with the gradient

(row) vector ~δl:

[
δC1

δW l
] = [

δC1

δ~zl
] · [δ~z

l

δW l
] = ~al−1 ⊗ ~δl.

.

6. Backpropagation step: For each l = L, ..., 2, compute

[
δC1

δ~bl
] = [

δC1

δ~zl
] · [δ~z

l

δ~bl
] = ~δl.

References

[1] Neilsen, Michael, Neural Networks and Deep Learning. Free online book:
downloaded at http://neuralnetworksanddeeplearning.com/.

[2] Porat, Boaz, A Gentle Introduction to Tensors. Downloaded at:
https://www.ese.wustl.edu/~nehorai/Porat_A_Gentle_Introduction_to_Tensors_2014.pdf

[3] 3Blue1Brown, Backpropagation calculus | Deep learning, chapter 4. Video
viewable at: https://www.youtube.com/watch?v=tIeHLnjs5U8

(c) Carolyn Johnston, 2020. All rights reserved.

[4] Petersen, K.B., Pedersen, M.S., The Matrix Cookbook. Downloaded at:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

[5] Minka, T.P., Old and New Matrix Algebra Useful for Statistics. Downloaded
at: https://tminka.github.io/papers/matrix/minka-matrix.pdf

(c) Carolyn Johnston, 2020. All rights reserved.

